Superconducting Spoke Cavities Demonstrate Excellent Performance

T. Tajima, F.L. Krawczyk, J.E. Ledford, J.-F. Liu, R.J. Roybal, D.L. Schrage, A.H. Shapiro (LANSCE Division), R.C. Gentzlinger, D.I. Montoya (ESA Division), R.L. Edwards (MST Division)

uperconducting radio-frequency (SCRF) cavities have been successfully used in electron accelerators and for high-velocity (\square = v/c = 1) particles and low-velocity heavy ions. However, a recent trend is to apply SCRF technology to intermediate velocity particles by shortening the accelerating gap (which is proportional to \square) in successful \square = 1 elliptical cavities. However, shortening the gap does not work well for \square < 0.4 because of mechanical weakness and multipacting within the cavity. A more promising approach is to use a structure called a spoke cavity (also known as a spoke resonator). In tests on a spoke cavity from Argonne National Laboratory, where this technology was originally developed, 1,2 we confirmed that it exhibits good performance. In addition, we designed, procured from industry, and tested two other \square = 0.175 two-gap spoke cavities in 2002 in support of the Advanced Accelerator Applications (AAA) program at the Los Alamos National Laboratory (LANL). $^{3-5}$ These cavities have also shown excellent results.

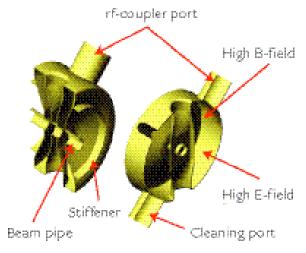
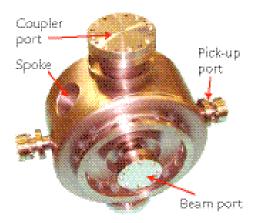



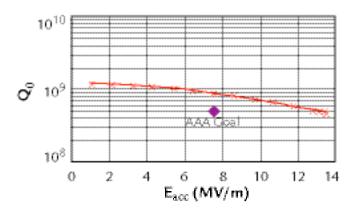
Fig. 1. Cut-away views of the inside of the spoke cavity.

Testing Spoke Cavities for Advanced Accelerator Applications

Figs. 1 and 2 show cut-away views of the inside of the cavity and a photograph of the cavity. It consists of a spoke in a 40-cm-diam barrel. The particle acceleration occurs in the two gaps between the spoke and the end walls. The 5-cm beam aperture is large enough for the cavity not to be activated by the proton beam.

The major radio-frequency (rf) design parameters are shown in Table 1. The ratios of peak-surface-electric and -magnetic fields to accelerating gradient were well optimized. This has helped our cavities achieve the highest accelerating gradient among other existing cavities in the world.

Fig. 2. A photograph of the spoke cavity, which is made of 3.5-mm-thick niobium sheets. Two cavities were fabricated on schedule by E. Zanon, an Italian manufacturer of pressure vessels.


Table 1. rf design parameters. ³	
Q ₀ (4 K)	1.05 x 10 ⁹ (for 61 n□)
T (□g)	0.7765 ([g = 0.175)
$T_{max}(\square)$	0.8063 (at [] = 0.21)
G	64.1 []
E_{pk}/E_{acc}	2.82
B_{pk}/E_{acc}	73.8 G/MV/m
P _{cav} (4 K)	4.63 W at 7.5 MV/m
R/Q	124 🛮

Test Results

We tested the mechanical properties at room temperature and measured the cavity quality factor (Q_0) as a function of accelerating gradient (E_{acc}). Fig. 3 shows the Q-E curve of one of the cavities. This cavity (EZ01) reached an E_{acc} of 13.5 MV/m, and the second cavity (EZ02) reached an E_{acc} of 12.9 MV/m. The design goal of the AAA project is 7.5 MV/m with a Q_0 of 5 x 108 (i.e., a loss of ~ 10 W). Our excellent results ensure the highly reliable operation required for transmutation of waste projects.

Future Prospects

Because of increased interest in spoke cavities, we held an international workshop on this subject at LANL in October 2002.⁶ It is likely that spoke cavities will be developed and used for future proton and heavy-ion accelerators designed for studies in neutron science, nuclear waste transmutation, rare-isotope physics, and other related areas.

Fig. 3. The cavity quality factor Q_0 as a function of accelerating gradient $E_{\rm acc}$. These data are of the first cavity (EZO1). The second cavity (EZO2) exhibited a similar curve and reached an $E_{\rm acc}$ of 12.9 MV/m.

Acknowledgements

We would like to thank Bill Clark and the LANSCE-1 Machine Shop personnel for helping us prepare for the spoke-cavity tests. We also would like to acknowledge the continuous support and encouragement of Mike Cappiello, Dominic Chan, Andy Jason, and Rich Sheffield.

References

- F.L. Krawczyk et al., Los Alamos National Laboratory report LALP-13943-PR (2001).
- 2. T. Tajima et al., in Proceedings of the 2001 Particle Accelerator Conference, 18-22 (2001).
- 3. F.L. Krawczyk et al., in *Proceedings of the European Particle Accelerator Conference* (2002).
- T. Tajima et al., in Proceedings of the International Linear Accelerator Conference (2002).
- 5. See http://laacg1.lanl.gov/scrflab/spoke.html.
- 6. See http://laacg1.lanl.gov/spokewk/.

For more information, contact Tsuyoshi Tajima (LANSCE Division), (505) 667-6559, MS H817, tajima@lanl.gov.

Produced by the LANSCE-4 communications team: Sue Harper, Grace Hollen, Annie Loweree, Barbara Maes, and Sharon Mikkelson.

A U.S. DEPARTMENT OF ENERGY LABORATORY Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36.

